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The COVID-19 pandemic is a global threat presenting health, eco-
nomic, and social challenges that continue to escalate. Metapop-
ulation epidemic modeling studies in the susceptible–exposed–
infectious–removed (SEIR) style have played important roles in
informing public health policy making to mitigate the spread of
COVID-19. These models typically rely on a key assumption on the
homogeneity of the population. This assumption certainly cannot
be expected to hold true in real situations; various geographic,
socioeconomic, and cultural environments affect the behaviors
that drive the spread of COVID-19 in different communities.
What’s more, variation of intracounty environments creates spa-
tial heterogeneity of transmission in different regions. To address
this issue, we develop a human mobility flow-augmented stochas-
tic SEIR-style epidemic modeling framework with the ability to
distinguish different regions and their corresponding behaviors.
This modeling framework is then combined with data assimila-
tion and machine learning techniques to reconstruct the historical
growth trajectories of COVID-19 confirmed cases in two counties
in Wisconsin. The associations between the spread of COVID-19
and business foot traffic, race and ethnicity, and age structure
are then investigated. The results reveal that, in a college town
(Dane County), the most important heterogeneity is age structure,
while, in a large city area (Milwaukee County), racial and ethnic
heterogeneity becomes more apparent. Scenario studies further
indicate a strong response of the spread rate to various reopen-
ing policies, which suggests that policy makers may need to take
these heterogeneities into account very carefully when design-
ing policies for mitigating the ongoing spread of COVID-19 and
reopening.

stochastic COVID-19 spread modeling | spatial epidemiology |
neighborhood disparities | human mobility | data assimilation

The COVID-19 pandemic is a global threat presenting health,
economic, and social challenges that continue to escalate.

As of September 30, 2020, the Centers for Disease Control and
Prevention had reported 7,168,077 total confirmed cases and
205,372 total deaths in the United States (1), and community
transmission of COVID-19 remains widespread in many parts
of the world. COVID-19 transmits mainly through close con-
tact with infected patients (2). Thus, human mobility flows play
a crucial role in the spatial spread of the virus; the heterogene-
ity of mobility patterns and social distancing behavior can largely
explain the geographic heterogeneity of transmission (3–11). In
the absence of vaccines or pharmaceutical agents to reduce the
transmission of the severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) that causes COVID-19, it is essential to
understand the effects of nonpharmaceutical epidemic control
and intervention measures. These include, but are not limited
to, social (physical) distancing, travel restrictions, closures of
schools and nonessential business services, limiting gathering

size, mandated face coverings, testing, isolation, contact trac-
ing, and timely quarantine to delay COVID-19 spread, all of
which have been intensely investigated (12–18). The difference in
the effectiveness of these interventions in mitigating COVID-19
across geography is substantial (19, 20). In the end, the same
combination of interventions may have different effects on the
overall progress of the epidemic in different contexts, and the
dependence of outcomes on local conditions is typically com-
plex. It is thus essential to develop accurate models that can
incorporate spatial heterogeneity to make principled predictions
about the effect of nonpharmaceutical interventions (NPIs) on
the spread of COVID-19 under various combinations of local
circumstances. For example, during the early outbreak in China,
scholars developed a model using observed data about human
mobility and COVID-19 infection and found that early detection
and isolation of confirmed cases could prevent more infections
than travel restrictions, but that combined NPIs achieved the
strongest and most rapid effect (14). In Italy, scholars recon-
structed the COVID-19 spatial spread dynamics and investigated
the effects of population-wide movements and interventions
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(21, 22). In addition, researchers analyzed mobility flow data
from smartphones across Europe before and after the implemen-
tation of NPIs and assessed the impact of coordination efforts of
European countries (7).

The large body of modeling work on COVID-19 can be
grouped into four broad categories: mechanistic models (12, 14,
16, 18, 21–25), agent-based models (26, 27), generalized linear
regression models (4, 28), and machine learning models (29,
30). Both mechanistic and agent-based models typically rely on
susceptible–infectious–removed (SIR) or susceptible–exposed–
infectious–removed (SEIR) compartmental-style models in epi-
demiology, which separate the population into four compart-
ments (susceptible, exposed, infectious, recovered or removed)
and model the dynamics of transitions between the compart-
ments. In the United States, the Institute for Health Metrics
and Evaluation at the University of Washington employed a
SEIR-style framework to project state-level hospital bed days,
intensive care unit days, ventilator days, and deaths, and to
model possible trajectories of SARS-CoV-2 infections (23, 24).
Considering the inflows and outflows of interstate travelers,
a travel network-based SEIR model system was developed to
project state-specific COVID-19 infection information and to
assess the impact of NPIs at the state level in the United
States (31). Another study integrated fine-resolution mobil-
ity networks with the SEIR model to reconstruct the growth
trajectory of COVID-19 infection in 10 large US metropoli-
tan areas (8). Regarding the time-varying state-specific control
measures, a temporal extended susceptible–antibody–infectious–
removed model was developed for the projection of county-level
COVID-19 prevalence (32). Under the agent-based model-
ing framework, several studies modeled the impact of testing,
mobility, timing of social distancing and adherence level, con-
tact tracing, and household quarantine on the multiple waves
of COVID-19 infection in different counties and metropolitan
areas (26, 27).

However, a straightforward SEIR metapopulation analysis,
useful as it may be in revealing and informing public health and
shaping policy making, relies on a key assumption of homogene-
ity of the population across the entire region. Each compartment
is treated as an aggregate of indistinguishable individuals from
different neighborhoods. This is not realistic. Recent studies
have shown evidence of spatial heterogeneity and disparities
in COVID-19 transmissions within major US cities (8, 33, 34).
Socioeconomic and cultural environments, which differ within
small geographic communities, affect the behaviors that drive
the spread of COVID-19. What’s more, geographic and trans-
portation factors create spatial heterogeneity of infection spread
in different subregions. Accurate and fine-grained modeling
requires a more refined approach to address the heterogeneity
issue.

Examining the spatial heterogeneity of infection spread is par-
ticularly important for modeling COVID-19, due to its complex
dependence on social factors. COVID-19 presents a highly diffi-
cult policy issue because people need to weigh various trade-offs
when they make health behavior decisions, trade-offs which may
involve political ideologies, socioeconomic status, and lifestyles
(35). Extensive research from social sciences has demonstrated
that people’s assessments of these trade-offs and their result-
ing health and risk behavior are affected by a variety of factors,
such as age, gender, race, political ideology, economic status,
culture, and religion (36–40). Despite a scientific consensus on
the effectiveness of social distancing, precautionary actions like
facial masking and social distancing are not universally adhered
to (41), and adherence to these measures is by no means uni-
form across populations and geography. Thus, modeling the
spread of COVID-19 requires scholars to attend to the hetero-
geneity in people from different backgrounds and in different
locales. The place (i.e., the type of neighborhoods and com-

munities) people live in is a reflection of race and ethnicity,
socioeconomic status, and age structure (42–44). Segregation
along these lines is not just an aggregate of individual choices
but a consequence of public polices (45). Emerging evidence
has shown disparities in COVID-19 outcomes between social
groups. For instance, scholars found that income, along with
race and other socioeconomic factors, has become a major pre-
dictor of COVID-19 infections and deaths (46, 47). A team of
international scholars has addressed the importance of using
social and behavioral sciences to support COVID-19 pandemic
responses (48), such as the study of social inequalities and politi-
cal polarization in response to social distancing and stay-at-home
mandates (49–51).

In this paper, we aim to capture the effect of social and
geographic heterogeneity within a population, and to reveal mul-
tiple aspects of the influences from different heterogeneities,
by building models with finer-resolution mobility and epidemic
information within a small geographic region (within a single
county). To this end, we have developed a human mobility flow-
augmented stochastic SEIR-style epidemic modeling framework
that is able to distinguish different subregions and their corre-
sponding epidemic growth characteristics. This modeling frame-
work is combined with data assimilation and machine learning
techniques to reconstruct the historical growth trajectories of
COVID-19 confirmed cases in each subregion. We then inves-
tigate the association between the spread of COVID-19 and
multiple factors that we believe are relevant and important, such
as business foot traffic, race and ethnicity, and age informa-
tion, based on existing studies (8, 44, 52). Finally, we perform
scenario studies in order to understand the social and policy
implications as well as to facilitate the development of guide-
lines to inform future policy making in public health crisis. The
two geographic regions we consider are Dane County, WI, and
Milwaukee County, WI, which contain the two largest cities in
Wisconsin—respectively, Madison (a college town and home of
the state government) and Milwaukee [a large city subject to
severe racial and ethnic segregation (53, 54)].

Materials and Methods
Data. The official daily updated testing results of COVID-19 confirmed cases
between March 11, 2020 and August 14, 2020 (as shown in Fig. 1) were
obtained from the Public Health Offices of City of Madison & Dane County
and Milwaukee County (55, 56) and aggregated to the census tract level
using the case’s residence information by the Wisconsin Department of
Health Services (WDHS) (57). As shown in SI Appendix, Fig. S2, the COVID-19
testing capacity in Wisconsin was sufficient and kept up with evolving
demands over time. The census tract geographic boundaries with demo-
graphics and socioeconomic attributes were obtained from the US Census
Bureau (58, 59). We collected over 3.6 million points of interest (POIs)
with aggregated and deidentified human travel patterns in the United
States from SafeGraph, and the data were further spatially filtered by
our study area. SafeGraph’s data are demographically distributed in a way
that matches the overall demographics in the United States Census popu-
lations (60). These mobile location data consist of “pings” identifying the
coordinates of a smartphone over time. To enhance privacy, SafeGraph
excludes census block group (CBG) information if fewer than two devices
visited a place in a week from a given CBG. For each POI, the records
of aggregated visitor patterns record the number of unique visitors and
the number of total visits to each venue during a specified time win-
dow (i.e., hourly, daily, weekly, and monthly); this allows us to estimate
the foot traffic of each venue and the origin-to-destination (O-D) spatial
interaction flow patterns during the study period (Fig. 1) (61). We then
aggregate the O-D flow matrices to the census tract level to match the
COVID-19 testing result data. After the spatial clustering of census tracts
based on their spatial connectivity (O-D flows) in each county, we further
aggregate all of the above-mentioned data to cluster (region) granularity
for modeling.

A Human Mobility Flow-Augmented Stochastic SEIR Model. The feature that
differentiates our approach from the classical SEIR model is our incorpo-
ration of spatial interactions between different regions and population
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Fig. 1. The spatial distributions of (A) human movement O-D flows between census tracts in Dane County, (B) Dane County spatial clustering results using
the Walktrap network community detection method, (C) the raw cumulative confirmed COVID-19 cases and ratio of per 10,000 people at the census tract
level in Dane County by August 14, 2020, (D) human movement O-D flows between census tracts in Milwaukee County, (E) Milwaukee County spatial
clustering results using the Walktrap network community detection method, and (F) the raw cumulative confirmed COVID-19 cases and ratio of per 10,000
people at the census tract level in Milwaukee County by August 12, 2020. (COVID-19 confirmed cases data were retrieved from the Wisconsin Department
of Health Services.)

heterogeneities (see model details in SI Appendix). This feature enables
our human mobility flow-augmented stochastic SEIR model to simulate and
analyze the important differentiation between multiple communities (sub-
regions) within one county, and the connection between the spread of
COVID-19 and local mobility and demographics, and social activities within
these communities. To be more specific, a traditional SEIR model divides
the population into four compartments and uses an ordinary differential
equation (ODE) system to describe the dynamics and flows between the
compartments. This treats the individuals within each compartment as indis-
tinguishable, and thus misses important distinctions which are relevant to
epidemic dynamics. By contrast, our model begins by using an unsupervised
machine learning algorithm to partition a county into local clusters (sub-
regions), using the observed human mobility flow data. This allows us to
divide the county into multiple distinct communities (based on spatial con-
nectivity), each having its unique geographic and demographics features.
Once these communities have been generated, we build a local SEIR model
for each region, which takes into account region-specific factors. All these
local SEIR models are then coupled together using the intracounty mobility
flow data, which allows us to quantify how much daily transmission occurs
within the regions as opposed to between the regions (an example is plot-
ted in SI Appendix, Fig. S26, which shows that 51.4% of infection took place
within the same regions in Dane County). The division of the county into
communities (subregions) allows us to identify the time-varying characteris-
tics in the spreading of COVID-19 in different subregions (e.g., peak infec-
tion timing and the leading factors), and enhances the forecasting capa-
bility of the model, which further facilitates the design of region-specific
policies.

Another special feature of our model is that it allows a dynamical
evolution of the key parameters (such as the transmission rate). In this
model, the transmission rate is described by a simple but effective stochas-
tic (Ornstein–Uhlenbeck) process (62), with the parameters to be tuned
by the daily reported COVID-19 infection data fetched from WDHS. This

modeling strategy facilitates an efficient and effective online learning pro-
cedure for the dynamical evolution of the ODE system that is capable of
capturing the temporal variability of COVID-19 transmission. We stress that
such time-dependent behavior of the transmission rate plays a vital role
in describing the nonstationary characteristics of the overall SEIR model
dynamics, resonating the uncertainties of the effective reproduction num-
ber (i.e., the actual average number of secondary cases per primary case
at a specific time) described in ref. 63. Since the method is relatively sen-
sitive to the input data (daily infection data), it is able to quickly detect
the changes in the spread of the disease, and reveal the possible associ-
ation with business traffic or notable social events (e.g., superspreading
events) (44, 64).

An Efficient Data Assimilation Strategy for Reconstructing Infection Trajec-
tory. The application of the data assimilation method for reconstruction
of the remaining parameters in the model is another desirable feature of
our approach. In each iteration, the data assimilation method combines the
observed data with prior model information to generate a posterior distri-
bution of the system state variables and parameters. In particular, we apply
the ensemble Kalman filter method (65) to estimate the hidden parameters
in the model and fit the observed confirmed case data to recover the historic
trajectory of the spread of the virus. Such a model calibration procedure
is completely data driven, with no ad hoc parameter adjustment. Since no
assumption is made on the transmission process, the model is independent
from unnecessary a priori presumptions, and the reconstructed parameters
can be viewed completely objectively. These objective quantities are then
used to draw association with possible influencing factors such as age, race
and ethnicity, and business reopening policies. Before using this calibra-
tion process to perform different scenario studies and predictions, we first
tested its validity. As shown in SI Appendix, Figs. S14 and S15, our calibration
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Table 1. Population density and ratio of different age groups by region in Dane County

Percent

Region 0 y to 17 y 18 y to 24 y 25 y to 29 y 30 y to 39 y 40 y to 49 y 50 y to 59 y 60 y to 69 y 70 y and above Density (people per km2)

1 23.95 7.10 5.16 12.34 15.32 15.28 11.71 9.13 87
2 20.64 8.49 8.38 16.52 13.04 14.40 10.89 7.64 233
3 16.02 22.87 12.04 15.64 9.59 9.81 8.08 5.95 1,536
4 23.54 7.25 8.08 14.78 13.13 13.45 11.22 8.56 122
5 26.71 6.65 6.15 15.83 14.02 13.31 9.33 8.01 99
6 25.56 6.24 3.31 11.02 14.66 15.51 11.04 12.66 146
7 0.63 92.20 3.30 1.04 0.80 1.25 0.72 0.06 9,306

process can almost perfectly recover the observed COVID-19 confirmed cases
time series data with very small relative errors (about 4% for Dane and 2%
for Milwaukee) and RMS errors (RMSE) in SI Appendix, Table S3.

Results
Origin-to-Destination Flow-Based Spatial Clusters. The traditional
SEIR model assumes homogeneity over its population. This
assumption, however, is not valid in either of the two counties
studied here. To have a finer-scale study, we divide both coun-
ties into several smaller intracounty regions using the Walktrap
network-based community detection method (66). The travel
O-D flow data of the first week of March (just before the ini-
tial widespread outbreak of COVID-19 in the United States)
is used to generate the graph weights for clustering. The spa-
tial clustering results for the two counties under investigation
are shown in Fig. 1. Dane County is partitioned into seven
regions (the two white areas present Lake Mendota and Lake
Monona). Each region has its unique demographic features (e.g.,
race and ethnicity composition, age structure). The spatial dis-
tribution of the demographic information in both counties is
presented in SI Appendix, Fig. S3. The maps show that there is
high age group heterogeneity in Dane County but high racial
and ethnic heterogeneity in Milwaukee County. In this respect,
it is worth specifically singling out region 7, the area containing
downtown Madison and the University of Wisconsin–Madison
campus. As one might expect, region 7 has significantly higher
population density (especially younger people) than the other
regions. Region 3 is a residential region adjacent to region 7,
and it also has relatively high population density. The popu-
lation density and age group summary by region is shown in
Table 1. Milwaukee County is partitioned into six regions. While
the population density in each region is relatively uniform, the
region is heavily segregated by race and ethnicity. The population
density and the distribution of different race and ethnic back-
grounds by region in Milwaukee are listed in Table 2. Region 3
has a predominantly Black population, while region 4 has a high
concentration of Hispanic residents.

Intracounty Modeling Results
Dane County. The population within each clustered region is
regarded as a homogeneous group. We then build a separate

SEIR model for each region, and couple these models together
using the interregional mobility flow traffic information. Each
region then has its own effective reproduction number Re , a
function of time representing the expected number of new sec-
ondary cases directly infected by each existing case. The effective
reproduction number is a critical indicator that quantifies the
spread of disease, and its dependence on time clearly is related to
the county’s own “stay-at-home” order and subsequent reopen-
ing procedure. In Dane County, phase 1 reopening was enacted
on May 26. During this period, all business were allowed to
open with 25% limit capacity. Phase 2 reopening was enacted
on June 15, and the capacity was increased to 50%. On July 2,
the county, after seeing an unusual increase of infection, rolled
back the phase 2 reopening, and the capacity limit was reduced
to 25%. On July 13, the county imposed an indoor face mask
requirement.

In Fig. 2, we plot the estimated effective reproduction number
Re and daily confirmed cases (with a 7-d average for smooth-
ing out the possible day-of-week reporting/testing bias) in each
region and its corresponding interquartile range (IQR, the range
that shows 25th to 75th percentiles). The dates of the reopen-
ing and rollback are also indicated in the plots. Region 7 (the
downtown Madison and university campus area) has the highest
Re , spiking as high as over five at the end of June, during the
brief period of relaxed capacity limits for indoor businesses. By
contrast, region 3 (the adjoining residential area), despite also
possessing a high population density, has a substantially lower
Re , without a major late-June spike. In Fig. 3A, we plot the
flow traffic normalized effective reproduction number in Dane
County. This measure controls for the fact that some regions
have higher intraregional spatial interactions (mobility flows)
than other regions and are thus expected to have a higher Re .
However, region 7, even upon this normalization, still has a sig-
nificantly higher Re than all other regions, suggesting that there
are social characteristics beyond population mobility contribut-
ing to rapid spread there. In particular, the normalized Re has
a peak in late June, approximately 7 d after the county started
phase 2 reopening on June 15.

To further study the reason for region 7 having unproportion-
ally high Re , we also pull its correlation with different kinds
of business foot traffic by investigating the SafeGraph mobile

Table 2. Population density and ratio of different race and ethnicity by region in Milwaukee
County

Percent

Region White Black Native Asian Hawaii Other Hispanic Density (people per km2)

1 75.51 14.59 0.46 3.94 0.03 2.33 6.82 1,623
2 87.52 3.94 0.60 3.45 0.01 1.74 11.59 1,030
3 17.56 71.88 0.28 5.27 0.01 1.72 4.32 2,033
4 66.49 6.77 0.95 2.58 0.04 19.04 48.22 2,474
5 81.26 9.70 0.73 3.29 0.01 1.63 6.92 1,720
6 89.09 2.48 0.92 3.78 0.04 1.06 9.59 739
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Fig. 2. Effective reproduction number (left y axis) and daily confirmed cases (right y axis) with 7-d average values for different regions in Dane County. The
vertical lines indicate the dates of phase 1 reopening, phase 2 reopening, rollback reopening, and face covering order.

device visit tracking data. In Table 3, we document the Pear-
son’s correlation of Re in each region with different categories
of business service visits. Clearly, the increase of Re in region 7
has a strong cross-correlation with the visits to “Drinking Places
(Alcoholic Beverages)” with a time lag of 5 d. Such a data-driven
analysis may complement the local official report showing that
more than 21% of the newly COVID-19–infected cases reported
recent trips to bars and taverns (67). From June 13 through June
26, 49% of reported positive cases out of 614 people who tested
positive were between the ages of 18 and 25 y, and 28% of cases
were associated with infection clusters, including 132 cases from
bars in Dane County (68).

We also perform scenario studies (by modifying the region-
specific effective reproduction number) to evaluate the possible
consequences under different policies to be put in place. In par-
ticular, we study what would have happened in the following
scenarios:

1) In scenario 1, there is no phase 2 reopening enacted on
June 15, and the effective reproductive number, Re , stays
unchanged afterward. Under this assumption, we run the
model forward from June 15 for 2 wk, and compare it with
the actual infection data.

2) In scenario 2, the county does not roll back the phase 2
reopening on July 2. We once again run the model forward
for another 2 wk with the high value of Re obtained during
the reopening time (before July 2).

3) In scenario 3, the county further reopens on August 4 at dif-
ferent transmission levels. We run the model forward for 10
d from August 4 with three different configurations: using the
Re value obtained on August 4 and assuming it stays the same
in the future, Re doubles its value, and Re triples its value.

In Fig. 4A, we plot the predicted infection of selected regions
supposing the June phase 2 reopening had not taken place. Our

model predicts clearly that the number of cases would be dras-
tically reduced in regions 3, 6, and 7 if the county did not enter
phase 2 reopening; in other words, those are the regions most
severely affected by that decision. In particular, in region 7, had
there been no reopening, the projected number of cases should
have been only 3.4 per thousand people by June 30, as com-
pared to the actual count of 11.6, more than 3 times as high.
Regions 1, 2, 4, and 5 see small impacts from the reopening
(see the results plotted in SI Appendix, Figs. S22 and S23). In
Fig. 4B, we plot the predicted infection assuming there was no
rollback from phase 2 reopening in the same three regions. It is
clear that the rollback of the reopening reduced the number of
infection cases significantly. Without the rollback, the predicted
total number of infection in Dane County during July 2–17 would
have been 7.3 per thousand people. This is almost 3 times 2.5,
the actual number of confirmed cases per thousand people in
the same time interval. In Fig. 4C, we plot the predicted num-
ber of infected people from August 4 into the future 10 d. If the
effective reproduction number gets tripled, the predicted num-
ber of infected people in Dane County would increase from 0.9
per thousand to 2.8 within 10 d. We also plot the predicted cumu-
lative and daily infection cases for each region in SI Appendix,
Figs. S22–S25.

To sum up, a strong cross-correlation is observed between the
number of visits to “Drinking places (Alcoholic Beverages)” and
increased infections in region 7. At the same time, the scenario
study suggests that, without phase 2 reopening, the infection in
Dane County would have been significantly lower (reduce about
two-thirds), and, without the subsequent rollback from phase 2
reopening, the infection would have continued to increase dra-
matically. All this together provides strong evidence that the
phase 2 reopening allowing 50% capacity in drinking places
played a major role in the drastic increase of the number of cases
observed in Dane County during the summer of 2020.

Fig. 3. The time-varying effective reproduction number normalized by inner region traffic frequency. (A) The 7-d average Re normalized in Dane County.
The yellow, green, blue, and purple vertical lines indicate the date of reopening phase 1, reopening phase 2, rollback of phase 2, and face covering order,
respectively. (B) The 7-d average Re normalized in Milwaukee County. The vertical lines indicate the starting date of state of Wisconsin Safer at Home Order,
phase 2 reopening, phase 3 reopening, phase 4 reopening, and mask ordinance (from left to right).
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Table 3. The cross-correlation of effective reproduction number (3-d average) of different regions and the number of service visits
(3-d average) within each region

Categories Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7

Snack and nonalcoholic beverage bars −0.21 (0.095) −0.18 (0.147) −0.22 (0.081) −0.17 (0.187) −0.21 (0.095) −0.07 (0.557) −0.02 (0.850)
Drinking places (alcoholic beverages) −0.35 (0.005) −0.09 (0.457) 0.16 (0.219) −0.13 (0.293) 0.04 (0.751) − 0.41 (0.001)
Supermarkets and Grocery stores −0.03 (0.801) 0.15 (0.238) 0.43 (0.000) 0.17 (0.185) 0.10 (0.421) −0.11 (0.407) 0.17 (0.189)
Nature parks and other

similar institutions −0.12 (0.339) 0.26 (0.039) −0.21 (0.095) 0.21 (0.090) 0.11 (0.374) 0.32 (0.011) 0.01 (0.929)
Fitness and recreational sports centers −0.19 (0.124) −0.36 (0.004) 0.13 (0.309) 0.03 (0.801) 0.12 (0.326) 0.06 (0.625) 0.16 (0.198)
Full-service restaurants −0.27 (0.033) −0.20 (0.119) 0.24 (0.061) −0.06 (0.662) 0.10 (0.446) 0.09 (0.488) 0.36 (0.003)
Limited-service restaurants −0.01 (0.936) −0.16 (0.207) 0.12 (0.354) −0.14 (0.287) −0.14 (0.256) −0.10 (0.438) 0.28 (0.023)

The cross-correlations are computed using 5 d of time lag, and the corresponding P values are listed in parentheses.

Milwaukee County. We perform similar studies in Milwaukee
County. Milwaukee started its phase 2 reopening on May 14.
During this period, restaurants and bars were allowed to have
take-out or delivery service only. On June 5, phase 3 reopen-
ing started, and restaurants and bars opened with 25% limit
capacity. The limit capacity was lifted to 50% on June 26, when
phase 4 began. On July 16, Milwaukee instituted a mask ordi-
nance requiring face covering in public spaces, both indoors and
outdoors.

In Fig. 5, we plot the effective reproduction number in dif-
ferent regions, and its IQR. Among the six regions, regions 3
and 4 see the highest Re , averaging 1.8 and 2, respectively. In

particular, in region 4, in mid-May, Re rose as high as 3.76.
As mentioned above, regions 3 and 4 are the two regions most
subject to racial and ethnic segregation. Such segregated neigh-
borhood patterns have also been identified previously through
human mobility-based spatial interaction network analysis using
location big data (69). The COVID-19 spread and deaths in
Milwaukee shows the racial disparities in health. According to
the official summary statistics in Milwaukee County (56), about
31% of the total confirmed COVID-19 cases are Hispanic and
28% are Black in our study period.

As we did in the Dane County study, we also consider
the effective reproduction number normalized to control for

Fig. 4. Prediction of cumulative infections (I+R) per 1,000 people in selected regions if Dane County, (A) scenario 1, did not have phase 2 reopening; (B)
scenario 2, did not have rollback from phase 2 reopening on July 2; or (C) scenario 3, further reopens on August 4. In C, shown are (Top) reopening with the
current effective reproduction number, (Middle) reopening with a doubled effective reproduction number, and (Bottom) reopening with a tripled effective
reproduction number.
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Fig. 5. Effective reproductive number (7-d average, left y axis) and reported cases (7-d average, right y axis) of region 1 to region 6 in Milwaukee County
(left to right, top to bottom). The vertical lines indicate the starting date of state of Wisconsin Safer at Home Order, phase 2 reopening, phase 3 reopening,
phase 4 reopening, and mask ordinance (from left to right).

intraregional flow traffic. As seen in Fig. 3B, even after this nor-
malization, region 4 still demonstrates the highest transmission.
That is, even with high mobility frequency within this region
being discounted, the local infection rate is still very high, with
the mid-May peak persisting. This suggests that policy makers
need to explicitly consider local transmission variation contexts
even after restricting intraregional flow traffic, to prevent more
health disparities in ongoing and future pandemics.

Assessing Spatial Heterogeneity with Age, Race, and People’s Self-
Reported Social Distancing. The disparities in COVID-19 spread
rate between different regions of the two counties studied reflect
important interaction between demographic divisions and res-
idents’ reaction to COVID-19. In Dane County, we observed
an appreciable difference in the outcomes between people who
lived near the campus area and those farther away, that is, spatial
heterogeneity (caused by age structure difference; SI Appendix,
Fig. S3A). In Milwaukee County, we observed stark differences
in the burden of COVID-19 between different race and eth-
nicity groups, especially between predominantly White regions
and regions with a higher Black and Hispanic population (SI
Appendix, Fig. S3D). One author in this research team was also
on the data analysis team of the “COVID-19 and Social Dis-
tancing” survey conducted between March 19 and April 1, 2020
by a group of interdisciplinary scholars and nongovernmental
organizations in Wisconsin (70). The survey received responses
from over 30,000 Wisconsin residents. We conducted data anal-
ysis on a behavioral question asking people to what extent they
practice social distancing, and compared different age groups’
answers and different race and ethnic groups’ answers. We found
that, among respondents aged 20 y to 29 y, a substantially higher
proportion of participants (4.25%) said they did not perform
social distancing at all or performed little social distancing, com-
pared to the other two age groups (30 y to 59 y: 1.26%; above
60 y: 1.03%) (Fig. 6, Left). For Hispanic and Black groups, there
are still a certain number of respondents who reported that
they did not perform social distancing at all (the top red bar in
Fig. 6, Right). These self-reported behavioral differences in pre-
cautionary behavior might partially explain the heterogeneous
spread patterns we observed in the two counties. More impor-
tantly, these disparities among age groups and race and ethnicity
groups in the COVID-19 outcome and in the self-reported social
distancing behavior flags an urgent policy need. Policy makers
and health communicators must investigate the underlying rea-
sons for demographically specific barriers to adoption of social
distancing and other mitigation measures (71).

Discussion
Sensitivity Test of Clustering and Modeling Results. The results of
clustering are subjected to the weekly travel O-D flow data
and to the network-based community detection algorithms. In

general, since each region in Dane County and Milwaukee
County has its own unique employment and business spatial
distribution and socioeconomic features, the clustering results
in Milwaukee County and Dane County are rather stable with
respect to the change of clustering methods and data from dif-
ferent weeks. In the simulation, we utilize the Walktrap method
on the travel O-D flow data of the week of March 2–8. Here
we discuss different clustering methods and using different peri-
ods of data and the impacts on modeling results as a test of the
sensitivity.

The Walktrap algorithm uses short random walks to detect
communities in a large graph. In comparison, we also apply
the Louvain method on the same data. The Louvain method
is a popular community detection algorithm that aims to maxi-
mize the modularity of a graph partition (72). SI Appendix, Figs.
S4B and S5B show the clustering results of Dane County and
Milwaukee County using the Louvain method with the same
travel O-D flow data. For Milwaukee County, the two clus-
tering results are very similar apart from a small section in
the lower left corner of the map, and both methods result
in six clustering groups. The modularities of clustering using
Walktrap and Louvain are 0.365 and 0.376, respectively, indi-
cating stable performance. For Dane County, the two methods
provide slightly different results. Walktrap divides the county
into seven areas, while the Louvain gives five. Comparing the
panels in SI Appendix, Fig. S4, the Louvain method clusters the
northeastern and central eastern areas as a single region, and the
Walktrap method combines regions 7 and 3. Since region 7 is the
downtown area where the campus of University of Wisconsin–
Madison is located, it plays an important role in our analysis
of human mobility flows, demographics, and spread of COVID-
19. Therefore, it is meaningful to identify it as a single region,
and we chose to use the Walktrap method. The modularities of
clustering using Walktrap and Louvain algorithms are very close:
0.318 and 0.334, respectively. In addition, we quantitatively study
the structure similarity between the two clustering results, and
list the adjusted Rand index (ARI) (73) in SI Appendix, Table
S1 and S2. Both Dane and Milwaukee counties have a rela-
tively high structure similarity when two clustering approaches
are used, with ARI being 0.68 and 0.81, respectively. For Dane
County, only 3 out of 105 census tracts change group assignment.
In Milwaukee County, 13 out of 296 census tracts change group
assignment when the Louvain method is used, and 17 change
group assignment when the Walktrap method is used.

We also study the sensitivity of the clustering results using O-D
flow data from different time intervals. In SI Appendix, Figs. S4
C and D and S5 C and D, we show the results for the clustering of
two counties using the O-D flow data from the weeks of March
9–15 and April 6–12, and compared them with that computed
from the week of March 2–8. The corresponding modularity and
the ARI values for the two counties for the first week of each
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Fig. 6. (Left) Comparison of self-reported social distancing behavior among different age groups. (Right) Comparison of self-reported social distancing
behavior among different race and ethnicity groups.

month from March to August 2020 are provided in SI Appendix,
Tables S1 and S2, respectively. We obtain a good consistency of
clustering results throughout different time periods.

Furthermore, we then test the model’s sensitivity regarding
the change in clustering. To do so, we run our model twice,
using the clustering results based on the data of March 9–15 and
April 6–12, respectively. The two new trajectories of effective
reproductive numbers are plotted in SI Appendix, Figs. S6–S9.
Comparing to the effective reproductive number presented in
Figs. 2 and 5 using the data from March 2–8, the difference is
very limited. In other words, even with small changes in the clus-
tering step, our epidemic model results remain with regard to
the spatial heterogeneity and the time-varying Re curve in each
region.

Policy Implications. Our modeling analysis results suggest several
policy implications that can be used in practice. First, the find-
ings lead to a better understanding of substantial local variations
in COVID-19 peak timing (reflected by the effective reproduc-
tion number Re) in different subregions and can inform further
investigation of possible superspreading events (44) (captured
by the very high Re values on certain days). Second, the find-
ings of scenario studies can help in assessing different business
reopening policies. Consider Dane County, which contains a
large “college town” environment with a unique age structure
(as shown in SI Appendix, Fig. S3); the area experienced spikes
in the effective reproduction number when the county entered
the phase 2 reopening in mid-June (as shown in Fig. 3A). Sev-
eral restriction policies need to be in place, such as reducing
business seating capacity and limiting indoor gathering size. We
also observed that the reproduction number decreased signifi-
cantly after the county rolled back its reopening policy in early
July. The pattern of reproduction rate following the policies is
especially substantial for the campus region. These results sug-
gest that policy makers need to design reopening in a more
nuanced manner. Instead of implementing a one-size-fits-all
reopening policy for all of the regions within a county, reopen-
ing policies that attend to the diverse nature of regions within
a county should be considered. For a geographically hetero-
geneous county, a regionalization-based policy is needed. For
instance, we demonstrated that certain types of businesses and

certain subregions have a much higher infection rate. In Dane
County, people’s visits to drinking places around the downtown
area have the strongest association with infection rates, and the
campus region (with more young people) has a higher infection
rate than other parts of the county do. In Milwaukee County,
the racial and ethnic heterogeneity associated with the infec-
tion is more apparent. These empirical evidences flag the crucial
importance of designing reopening policies which take these het-
erogeneities into account when choosing what types of businesses
and what regions to reopen first. Public policies also need to
adapt to different regions that consist of very different demo-
graphic populations, in order to control the reproduction rate
of COVID-19. The COVID-19 is not only a public health prob-
lem but also a problem that reflects existing disparities among
various socially distinct population groups and neighborhoods.
Last but not least, our research can guide regionalization-based
COVID-19 response resources allocation (e.g., testing and vac-
cination) and public health communication strategies tailored
to specific demographics and time-varying infection character-
istics in different neighborhoods. For example, the prioritiz-
ing strategy of resource supply and distribution (e.g., rapid
COVID-19 testing and vaccination) is required when a county
needs to adapt its community-specific containment strategy as
COVID-19 evolves.

Data Availability. All the data that support the findings of this study
are publicly available on the GitHub repository under the MIT license:
https://github.com/GeoDS/IntraCounty-Mobility-SEIR.
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